Prompts¶
When working with Large Language Model (LLM) APIs, the "prompt" is generally a list of messages where each message has a particular role. These prompts are the foundation of effectively working with LLMs, so Mirascope provides powerful tools to help you create, manage, and optimize your prompts for various LLM interactions.
Let's look at how we can write prompts using Mirascope in a reusable, modular, and provider-agnostic way.
Calls will come later
For the following explanations we will be talking only about the messages aspect of prompt engineering and will discuss calling the API later in the Calls documentation.
In that section we will show how to use these provider-agnostic prompts to actually call a provider's API as well as how to engineer and tie a prompt to a specific call.
Prompt Templates (Messages)¶
First, let's look at a basic example:
from mirascope.core import BaseMessageParam, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> list[BaseMessageParam]:
return [BaseMessageParam(role="user", content=f"Recommend a {genre} book")]
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='user', content='Recommend a fantasy book')]
In this example:
- The
recommend_book_prompt
method's signature defines the prompt's template variables. - Calling the method with
genre="fantasy"
returns a list with the correspondingBaseMessageParam
instance with roleuser
and content "Recommend a fantasy book".
The core concept to understand here is BaseMessageParam
. This class operates as the base class for message parameters that Mirascope can handle and use across all supported providers.
In Mirascope, we use the @prompt_template
decorator to write prompt templates as reusable methods that return the corresponding list of BaseMessageParam
instances.
There are four methods of writing prompts:
- (Shorthand) Returning the
str
orlist
content for a single user message. - (Messages) Using
Messages.{Role}
methods, which accept the full or shorthand content and output aBaseMessageParam
instance. - (String Template) Passing a string template to
@prompt_template
that gets parsed and then formatted like a normal Python formatted string. - (BaseMessageParam) Directly writing
BaseMessageParam
instances.
Which method you use is mostly up to your preference, so feel free to select which one you prefer in the following sections.
Message Roles¶
We can also define additional messages with different roles, such as a system message:
from mirascope.core import Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> Messages.Type:
return [
Messages.System("You are a librarian"),
Messages.User(f"Recommend a {genre} book"),
]
print(recommend_book_prompt("fantasy"))
# Output: [
# BaseMessageParam(role='system', content='You are a librarian'),
# BaseMessageParam(role='user', content='Recommend a fantasy book'),
# ]
from mirascope.core import Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> Messages.Type:
return [
Messages.System("You are a librarian"),
Messages.User(f"Recommend a {genre} book"),
]
print(recommend_book_prompt("fantasy"))
# Output: [
# BaseMessageParam(role='system', content='You are a librarian'),
# BaseMessageParam(role='user', content='Recommend a fantasy book'),
# ]
from mirascope.core import prompt_template
@prompt_template(
"""
SYSTEM: You are a librarian
USER: Recommend a {genre} book
"""
)
def recommend_book_prompt(genre: str): ...
print(recommend_book_prompt("fantasy"))
# Output: [
# BaseMessageParam(role='system', content='You are a librarian'),
# BaseMessageParam(role='user', content='Recommend a fantasy book'),
# ]
from mirascope.core import BaseMessageParam, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> list[BaseMessageParam]:
return [
BaseMessageParam(role="system", content="You are a librarian"),
BaseMessageParam(role="user", content=f"Recommend a {genre} book"),
]
print(recommend_book_prompt("fantasy"))
# Output: [
# BaseMessageParam(role='system', content='You are a librarian'),
# BaseMessageParam(role='user', content='Recommend a fantasy book'),
# ]
Messages.Type
The return type Messages.Type
accepts all shorthand methods as well as BaseMessageParam
types. Since the message methods (e.g. Messages.User
) return BaseMessageParam
instances, we generally recommend always typing your prompt templates with the Messages.Type
return type since it covers all prompt template writing methods.
Supported Roles
Mirascope prompt templates currently support the system
, user
, and assistant
roles. When using string templates, the roles are parsed by their corresponding all caps keyword (e.g. SYSTEM).
For messages with the tool
role, see how Mirascope automatically generates these messages for you in the Tools and Agents sections.
Multi-Line Prompts¶
When writing prompts that span multiple lines, it's important to ensure you don't accidentally include additional, unnecessary tokens (namely \t
tokens):
import inspect
from mirascope.core import Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> Messages.Type:
return inspect.cleandoc(
f"""
Recommend a {genre} book.
Output in the format Title by Author.
"""
)
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='system', content='Recommend a fantasy book.\nOutput in the format Title by Author.')]
import inspect
from mirascope.core import Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> Messages.Type:
return Messages.User(
inspect.cleandoc(
f"""
Recommend a {genre} book.
Output in the format Title by Author.
"""
)
)
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='system', content='Recommend a fantasy book.\nOutput in the format Title by Author.')]
from mirascope.core import prompt_template
@prompt_template(
"""
Recommend a {genre} book.
Output in the format Title by Author.
"""
)
def recommend_book_prompt(genre: str): ...
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='system', content='Recommend a fantasy book.\nOutput in the format Title by Author.')]
import inspect
from mirascope.core import BaseMessageParam, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=inspect.cleandoc(
f"""
Recommend a {genre} book.
Output in the format Title by Author.
"""
),
),
]
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='system', content='Recommend a fantasy book.\nOutput in the format Title by Author.')]
In this example, we use inspect.cleandoc
to remove unnecessary tokens while maintaining proper formatting in our codebase.
Multi-Line String Templates
When using string templates, the template is automatically cleaned for you, so there is no need to use inspect.cleandoc
in that case. However, it's extremely important to note that you must start messages with the same indentation in order to properly remove the unnecessary tokens. For example:
Multi-Modal Inputs¶
Recent advancements in Large Language Model architecture has enabled many model providers to support multi-modal inputs (text, images, audio, etc.) for a single endpoint. Mirascope treats these input types as first-class and supports them natively.
While Mirascope provides a consistent interface, support varies among providers:
Type | Anthropic | Cohere | Gemini | Groq | Mistral | OpenAI |
---|---|---|---|---|---|---|
text | ✓ | ✓ | ✓ | ✓ | ✓ | ✓ |
image | ✓ | - | ✓ | ✓ | ✓ | ✓ |
audio | - | - | ✓ | - | - | ✓ |
video | - | - | ✓ | - | - | - |
document | ✓ | - | - | - | - | - |
Legend: ✓ (Supported), - (Not Supported)
Image Inputs¶
from mirascope.core import Messages, prompt_template
from PIL import Image
@prompt_template()
def recommend_book_prompt(previous_book: Image.Image) -> Messages.Type:
return ["I just read this book:", previous_book, "What should I read next?"]
with Image.open("...") as image:
print(recommend_book_prompt(image))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# ImagePart(type="image", media_type="image/jpeg", image=b"...", detail=None),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
from mirascope.core import Messages, prompt_template
from PIL import Image
@prompt_template()
def recommend_book_prompt(previous_book: Image.Image) -> Messages.Type:
return Messages.User(
["I just read this book:", previous_book, "What should I read next?"]
)
with Image.open("...") as image:
print(recommend_book_prompt(image))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# ImagePart(type="image", media_type="image/jpeg", image=b"...", detail=None),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
from mirascope.core import prompt_template
@prompt_template(
"I just read this book: {previous_book:image} What should I read next?"
)
def recommend_book_prompt(previous_book: bytes): ...
print(recommend_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# ImagePart(type="image", media_type="image/jpeg", image=b"...", detail=None),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
from mirascope.core import BaseMessageParam
from mirascope.core.base import ImagePart, TextPart
def recommend_book_prompt(previous_book_jpeg: bytes) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=[
TextPart(type="text", text="I just read this book:"),
ImagePart(
type="image",
media_type="image/jpeg",
image=previous_book_jpeg,
detail=None,
),
TextPart(type="text", text="What should I read next?"),
],
)
]
print(recommend_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# ImagePart(type="image", media_type="image/jpeg", image=b"...", detail=None),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
Additional String Template Image Functionality
When using string templates, you can also specify :images
to inject multiple image inputs through a single template variable.
The :image
and :images
tags support the bytes | str
and list[bytes] | list[str]
types, respectively. When passing in a str
, the string template assumes it indicates a url or local filepath and will attempt to load the bytes from the source.
You can also specify additional options as arguments of the tags, e.g. {url:image(detail=low)}
Audio Inputs¶
from pydub import AudioSegment
from mirascope.core import prompt_template, Messages
@prompt_template()
def identify_book_prompt(audio_wave: AudioSegment) -> Messages.Type:
return ["Here's an audio book snippet:", audio_wave, "What book is this?"]
with open("....", "rb") as audio:
print(identify_book_prompt(AudioSegment.from_mp3(audio)))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
from pydub import AudioSegment
from mirascope.core import prompt_template, Messages
@prompt_template()
def identify_book_prompt(audio_wave: AudioSegment) -> Messages.Type:
return Messages.User(
["Here's an audio book snippet:", audio_wave, "What book is this?"]
)
with open("....", "rb") as audio:
print(identify_book_prompt(AudioSegment.from_mp3(audio)))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
from mirascope.core import prompt_template
@prompt_template("Here's an audio book snippet: {audio_wave:audio} What book is this?")
def identify_book_prompt(audio_wave: bytes): ...
print(identify_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
from mirascope.core import BaseMessageParam
from mirascope.core.base import AudioPart, TextPart
def identify_book_prompt(audio_wave: bytes) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=[
TextPart(type="text", text="Here's an audio book snippet:"),
AudioPart(
type="audio",
media_type="audio/wav",
audio=audio_wave,
),
TextPart(type="text", text="What book is this?"),
],
)
]
print(identify_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/mp3', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
import wave
from mirascope.core import Messages, prompt_template
@prompt_template()
def identify_book_prompt(audio_wave: wave.Wave_read) -> Messages.Type:
return ["Here's an audio book snippet:", audio_wave, "What book is this?"]
with open("....", "rb") as f, wave.open(f, "rb") as audio:
print(identify_book_prompt(audio))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
import wave
from mirascope.core import Messages, prompt_template
@prompt_template()
def identify_book_prompt(audio_wave: wave.Wave_read) -> Messages.Type:
return Messages.User(
["Here's an audio book snippet:", audio_wave, "What book is this?"]
)
with open("....", "rb") as f, wave.open(f, "rb") as audio:
print(identify_book_prompt(audio))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
from mirascope.core import prompt_template
@prompt_template("Here's an audio book snippet: {audio_wave:audio} What book is this?")
def identify_book_prompt(audio_wave: bytes): ...
print(identify_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/wav', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
from mirascope.core import BaseMessageParam
from mirascope.core.base import AudioPart, TextPart
def identify_book_prompt(audio_wave: bytes) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=[
TextPart(type="text", text="Here's an audio book snippet:"),
AudioPart(
type="audio",
media_type="audio/wav",
audio=audio_wave,
),
TextPart(type="text", text="What book is this?"),
],
)
]
print(identify_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="Here's an audio book snippet:"),
# AudioPart(type='audio', media_type='audio/mp3', audio=b'...'),
# TextPart(type="text", text="What book is this?"),
# ],
# )
# ]
Additional String Template Audio Functionality
When using string templates, you can also specify :audios
to inject multiple audio inputs through a single template variable.
The :audio
and :audios
tags support the bytes | str
and list[bytes] | list[str]
types, respectively. When passing in a str
, the string template assumes it indicates a url or local filepath and will attempt to load the bytes from the source.
Document Inputs¶
from mirascope.core import prompt_template
@prompt_template(
"I just read this book: {previous_book:document} What should I read next?"
)
def recommend_book_prompt(previous_book: bytes): ...
print(recommend_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# DocumentPart(type='document', media_type='application/pdf', document=b'...'),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
from mirascope.core import BaseMessageParam
from mirascope.core.base import DocumentPart, TextPart
def recommend_book_prompt(previous_book_pdf: bytes) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=[
TextPart(type="text", text="I just read this book:"),
DocumentPart(
type="document",
media_type="application/pdf",
document=previous_book_pdf,
),
TextPart(type="text", text="What should I read next?"),
],
)
]
print(recommend_book_prompt(b"..."))
# Output: [
# BaseMessageParam(
# role="user",
# content=[
# TextPart(type="text", text="I just read this book:"),
# DocumentPart(type='document', media_type='application/pdf', document=b'...'),
# TextPart(type="text", text="What should I read next?"),
# ],
# )
# ]
Support Document Types
Currently, only Anthropic supports the :document
specifier, and only PDF documents are supported.
Additional String Template Document Functionality
When using string templates, you can also specify :documents
to inject multiple audio inputs through a single template variable.
The :document
and :documents
tags support the bytes | str
and list[bytes] | list[str]
types, respectively. When passing in a str
, the string template assumes it indicates a url or local filepath and will attempt to load the bytes from the source.
Chat History¶
Often you'll want to inject messages (such as previous chat messages) into the prompt. Generally you can just unroll the messages into the return value of your prompt template. When using string templates, we provide a MESSAGES
keyword for this injection, which you can add in whatever position and as many times as you'd like:
from mirascope.core import BaseMessageParam, Messages, prompt_template
@prompt_template()
def chatbot(query: str, history: list[BaseMessageParam]) -> list[BaseMessageParam]:
return [Messages.System("You are a librarian"), *history, Messages.User(query)]
history = [
Messages.User("Recommend a book"),
Messages.Assistant("What genre do you like?"),
]
print(chatbot("fantasy", history))
# Output: [
# BaseMessageParam(role="system", content="You are a librarian"),
# BaseMessageParam(role="user", content="Recommend a book"),
# BaseMessageParam(role="assistant", content="What genre do you like?"),
# BaseMessageParam(role="user", content="fantasy"),
# ]
from mirascope.core import BaseMessageParam, Messages, prompt_template
@prompt_template()
def chatbot(query: str, history: list[BaseMessageParam]) -> list[BaseMessageParam]:
return [Messages.System("You are a librarian"), *history, Messages.User(query)]
history = [
Messages.User("Recommend a book"),
Messages.Assistant("What genre do you like?"),
]
print(chatbot("fantasy", history))
# Output: [
# BaseMessageParam(role="system", content="You are a librarian"),
# BaseMessageParam(role="user", content="Recommend a book"),
# BaseMessageParam(role="assistant", content="What genre do you like?"),
# BaseMessageParam(role="user", content="fantasy"),
# ]
from mirascope.core import BaseMessageParam, Messages, prompt_template
@prompt_template(
"""
SYSTEM: You are a librarian
MESSAGES: {history}
USER: {query}
"""
)
def chatbot(query: str, history: list[BaseMessageParam]): ...
history = [
Messages.User("Recommend a book"),
Messages.Assistant("What genre do you like?"),
]
print(chatbot("fantasy", history))
# Output: [
# BaseMessageParam(role="system", content="You are a librarian"),
# BaseMessageParam(role="user", content="Recommend a book"),
# BaseMessageParam(role="assistant", content="What genre do you like?"),
# BaseMessageParam(role="user", content="fantasy"),
# ]
from mirascope.core import BaseMessageParam, prompt_template
@prompt_template()
def chatbot(query: str, history: list[BaseMessageParam]) -> list[BaseMessageParam]:
return [
BaseMessageParam(role="system", content="You are a librarian"),
*history,
BaseMessageParam(role="user", content=query),
]
history = [
BaseMessageParam(role="user", content="Recommend a book"),
BaseMessageParam(role="assistant", content="What genre do you like?"),
]
print(chatbot("fantasy", history))
# Output: [
# BaseMessageParam(role="system", content="You are a librarian"),
# BaseMessageParam(role="user", content="Recommend a book"),
# BaseMessageParam(role="assistant", content="What genre do you like?"),
# BaseMessageParam(role="user", content="fantasy"),
# ]
Object Attribute Access¶
When using template variables that have attributes, you can easily inject these attributes directly even when using string templates:
from mirascope.core import prompt_template
from pydantic import BaseModel
class Book(BaseModel):
title: str
author: str
@prompt_template()
def recommend_book_prompt(book: Book) -> str:
return f"I read {book.title} by {book.author}. What should I read next?"
book = Book(title="The Name of the Wind", author="Patrick Rothfuss")
print(recommend_book_prompt(book))
# Output: [BaseMessageParam(role='user', content='I read The Name of the Wind by Patrick Rothfuss. What should I read next?')]
from mirascope.core import Messages, prompt_template
from pydantic import BaseModel
class Book(BaseModel):
title: str
author: str
@prompt_template()
def recommend_book_prompt(book: Book) -> Messages.Type:
return Messages.User(
f"I read {book.title} by {book.author}. What should I read next?"
)
book = Book(title="The Name of the Wind", author="Patrick Rothfuss")
print(recommend_book_prompt(book))
# Output: [BaseMessageParam(role='user', content='I read The Name of the Wind by Patrick Rothfuss. What should I read next?')]
from mirascope.core import prompt_template
from pydantic import BaseModel
class Book(BaseModel):
title: str
author: str
@prompt_template("I read {book.title} by {book.author}. What should I read next?")
def recommend_book_prompt(book: Book): ...
book = Book(title="The Name of the Wind", author="Patrick Rothfuss")
print(recommend_book_prompt(book))
# Output: [BaseMessageParam(role='user', content='I read The Name of the Wind by Patrick Rothfuss. What should I read next?')]
from mirascope.core import BaseMessageParam, prompt_template
from pydantic import BaseModel
class Book(BaseModel):
title: str
author: str
@prompt_template()
def recommend_book_prompt(book: Book) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user",
content=f"I read {book.title} by {book.author}. What should I read next?",
)
]
book = Book(title="The Name of the Wind", author="Patrick Rothfuss")
print(recommend_book_prompt(book))
# Output: [BaseMessageParam(role='user', content='I read The Name of the Wind by Patrick Rothfuss. What should I read next?')]
It's worth noting that this also works with self
when using prompt templates inside of a class, which is particularly important when building Agents.
Format Specifiers¶
Since Mirascope prompt templates are just formatted strings, standard Python format specifiers work as expected:
from mirascope.core import prompt_template
@prompt_template()
def recommend_book(genre: str, price: float) -> str:
return f"Recommend a {genre} book under ${price:.2f}"
print(recommend_book("fantasy", 12.3456))
# Output: [BaseMessageParam(role='user', content='Recommend a fantasy book under $12.35')]
from mirascope.core import Messages, prompt_template
@prompt_template()
def recommend_book(genre: str, price: float) -> Messages.Type:
return Messages.User(f"Recommend a {genre} book under ${price:.2f}")
print(recommend_book("fantasy", 12.3456))
# Output: [BaseMessageParam(role='user', content='Recommend a fantasy book under $12.35')]
from mirascope.core import BaseMessageParam, prompt_template
@prompt_template()
def recommend_book(genre: str, price: float) -> list[BaseMessageParam]:
return [
BaseMessageParam(
role="user", content=f"Recommend a {genre} book under ${price:.2f}"
)
]
print(recommend_book("fantasy", 12.3456))
# Output: [BaseMessageParam(role='user', content='Recommend a fantasy book under $12.35')]
When writing string templates, we also offer additional format specifiers for convenience around formatting more dynamic content:
from mirascope.core import prompt_template
@prompt_template(
"""
Book themes:
{themes:list}
Character analysis:
{characters:lists}
"""
)
def analyze_book(themes: list[str], characters: list[list[str]]): ...
prompt = analyze_book(
themes=["redemption", "power", "friendship"],
characters=[
["Name: Frodo", "Role: Protagonist"],
["Name: Gandalf", "Role: Mentor"],
],
)
print(prompt[0].content)
# Output:
# Book themes:
# redemption
# power
# friendship
# Character analysis:
# Name: Frodo
# Role: Protagonist
# Name: Gandalf
# Role: Mentor
from mirascope.core import prompt_template
@prompt_template(
"""
Book themes:
{themes:text}
Character analysis:
{characters:texts}
"""
)
def analyze_book(themes: str, characters: list[str]): ...
prompt = analyze_book(
themes="redemption, power, friendship",
characters=[
"Name: Frodo, Role: Protagonist",
"Name: Gandalf, Role: Mentor",
],
)
print(prompt[0].content)
# Output:
# [
# TextPart(type="text", text="Book themes:"),
# TextPart(type="text", text="redemption, power, friendship"),
# TextPart(type="text", text="Character analysis:"),
# TextPart(type="text", text="Name: Frodo, Role: Protagonist"),
# TextPart(type="text", text="Name: Gandalf, Role: Mentor"),
# ]
from mirascope.core import prompt_template
from mirascope.core.base import TextPart
@prompt_template(
"""
Book themes:
{themes:text}
Character analysis:
{characters:texts}
"""
)
def analyze_book(themes: TextPart, characters: list[TextPart]): ...
prompt = analyze_book(
themes=TextPart(type="text", text="redemption, power, friendship"),
characters=[
TextPart(type="text", text="Name: Frodo, Role: Protagonist"),
TextPart(type="text", text="Name: Gandalf, Role: Mentor"),
],
)
print(prompt[0].content)
# Output:
# [
# TextPart(type="text", text="Book themes:"),
# TextPart(type="text", text="redemption, power, friendship"),
# TextPart(type="text", text="Character analysis:"),
# TextPart(type="text", text="Name: Frodo, Role: Protagonist"),
# TextPart(type="text", text="Name: Gandalf, Role: Mentor"),
# ]
Computed Fields (Dynamic Configuration)¶
In Mirascope, we write prompt templates as functions, which enables dynamically configuring our prompts at runtime depending on the values of the template variables. We use the term "computed fields" to talk about variables that are computed and formatted at runtime.
In the following examples, we demonstrate using computed fields and dynamic configuration across all prompt templating methods. Of course, this is only actually necessary for string templates. For other methods you can simply format the computed fields directly and return Messages.Type
as before.
However, there is value in always dynamically configuring computed fields for any and all prompt templating methods. While we cover this in more detail in the Calls and Chaining sections, the short of it is that it enables proper tracing even across nested calls and chains.
from mirascope.core import BaseDynamicConfig, Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> BaseDynamicConfig:
uppercase_genre = genre.upper()
messages = [Messages.User(f"Recommend a {uppercase_genre} book")]
return {
"messages": messages,
"computed_fields": {"uppercase_genre": uppercase_genre},
}
print(recommend_book_prompt("fantasy"))
# Output: {
# "messages": [BaseMessageParam(role="user", content="Recommend a FANTASY book")],
# "computed_fields": {"uppercase_genre": "FANTASY"},
# }
from mirascope.core import BaseDynamicConfig, Messages, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> BaseDynamicConfig:
uppercase_genre = genre.upper()
messages = [Messages.User(f"Recommend a {uppercase_genre} book")]
return {
"messages": messages,
"computed_fields": {"uppercase_genre": uppercase_genre},
}
print(recommend_book_prompt("fantasy"))
# Output: {
# "messages": [BaseMessageParam(role="user", content="Recommend a FANTASY book")],
# "computed_fields": {"uppercase_genre": "FANTASY"},
# }
from mirascope.core import BaseDynamicConfig, prompt_template
@prompt_template("Recommend a {uppercase_genre} book")
def recommend_book_prompt(genre: str) -> BaseDynamicConfig:
uppercase_genre = genre.upper()
return {
"computed_fields": {"uppercase_genre": uppercase_genre},
}
print(recommend_book_prompt("fantasy"))
# Output: [BaseMessageParam(role='user', content='Recommend a FANTASY book')]
from mirascope.core import BaseDynamicConfig, BaseMessageParam, prompt_template
@prompt_template()
def recommend_book_prompt(genre: str) -> BaseDynamicConfig:
uppercase_genre = genre.upper()
messages = [
BaseMessageParam(role="user", content=f"Recommend a {uppercase_genre} book")
]
return {
"messages": messages,
"computed_fields": {"uppercase_genre": uppercase_genre},
}
print(recommend_book_prompt("fantasy"))
print(recommend_book_prompt("fantasy"))
# Output: {
# "messages": [BaseMessageParam(role="user", content="Recommend a FANTASY book")],
# "computed_fields": {"uppercase_genre": "FANTASY"},
# }
There are various other parts of an LLM API call that we may want to configure dynamically as well, such as call parameters, tools, and more. We cover such cases in each of their respective sections.
Next Steps¶
By mastering prompts in Mirascope, you'll be well-equipped to build robust, flexible, and reusable LLM applications.
Next, we recommend taking a look at the Calls documentation, which shows you how to use your prompt templates to actually call LLM APIs and generate a response.