Skip to content

Response Models

If you haven't already, we recommend first reading the section on Calls

Response Models in Mirascope provide a powerful way to structure and validate the output from Large Language Models (LLMs). By leveraging Pydantic's BaseModel, Response Models offer type safety, automatic validation, and easier data manipulation for your LLM responses. While we cover some details in this documentation, we highly recommend reading through Pydantic's documentation for a deeper, comprehensive dive into everything you can do with Pydantic's BaseModel.

Why Use Response Models?

  1. Structured Output: Define exactly what you expect from the LLM, ensuring consistency in responses.
  2. Automatic Validation: Pydantic handles type checking and validation, reducing errors in your application.
  3. Improved Type Hinting: Better IDE support and clearer code structure.
  4. Easier Data Manipulation: Work with Python objects instead of raw strings or dictionaries.

Basic Usage and Syntax

Let's take a look at a basic example using Mirascope vs. official provider SDKs:

Mirascope

from mirascope.core import openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import Messages, bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import openai, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import anthropic, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import mistral, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import gemini, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import groq, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import cohere, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import litellm, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import azure, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import prompt_template, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import bedrock, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from mirascope.core import BaseMessageParam, bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
Official SDK
from openai import OpenAI
from pydantic import BaseModel

client = OpenAI()


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    completion = client.chat.completions.create(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": f"Extract {text}"}],
        tools=[
            {
                "function": {
                    "name": "Book",
                    "description": "An extracted book.",
                    "parameters": {
                        "properties": {
                            "title": {"type": "string"},
                            "author": {"type": "string"},
                        },
                        "required": ["title", "author"],
                        "type": "object",
                    },
                },
                "type": "function",
            }
        ],
        tool_choice="required",
    )
    if tool_calls := completion.choices[0].message.tool_calls:
        return Book.model_validate_json(tool_calls[0].function.arguments)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from anthropic import Anthropic
from pydantic import BaseModel

client = Anthropic()


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    message = client.messages.create(
        model="claude-3-5-sonnet-20240620",
        max_tokens=1024,
        messages=[{"role": "user", "content": f"Extract {text}"}],
        tools=[
            {
                "name": "Book",
                "description": "An extracted book.",
                "input_schema": {
                    "properties": {
                        "title": {"type": "string"},
                        "author": {"type": "string"},
                    },
                    "required": ["title", "author"],
                    "type": "object",
                },
            }
        ],
        tool_choice={"type": "tool", "name": "Book"},
    )
    for block in message.content:
        if block.type == "tool_use" and block.input is not None:
            return Book.model_validate(block.input)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
import os
from typing import cast

from mistralai import Mistral
from pydantic import BaseModel

client = Mistral(api_key=os.environ["MISTRAL_API_KEY"])


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    completion = client.chat.complete(
        model="mistral-large-latest",
        messages=[{"role": "user", "content": f"Extract {text}"}],
        tools=[
            {
                "function": {
                    "name": "Book",
                    "description": "An extracted book.",
                    "parameters": {
                        "properties": {
                            "title": {"type": "string"},
                            "author": {"type": "string"},
                        },
                        "required": ["title", "author"],
                        "type": "object",
                    },
                },
                "type": "function",
            }
        ],
        tool_choice="any",
    )
    if (
        completion
        and (choices := completion.choices)
        and (tool_calls := choices[0].message.tool_calls)
    ):
        return Book.model_validate_json(cast(str, tool_calls[0].function.arguments))
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from google.generativeai import GenerativeModel
from google.generativeai.types import FunctionDeclaration, Tool, content_types
from proto.marshal.collections import RepeatedComposite
from pydantic import BaseModel

model = GenerativeModel("gemini-1.5-flash")


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    response = model.generate_content(
        f"Extract {text}",
        tools=[
            Tool(
                function_declarations=[
                    FunctionDeclaration(
                        **{
                            "name": "Book",
                            "description": "An extracted book.",
                            "parameters": {
                                "properties": {
                                    "title": {"type": "string"},
                                    "author": {"type": "string"},
                                },
                                "required": ["title", "author"],
                                "type": "object",
                            },
                        }
                    )
                ]
            )
        ],
        tool_config=content_types.to_tool_config(
            {
                "function_calling_config": {
                    "mode": "any",
                    "allowed_function_names": ["Book"],
                }
            }  # pyright: ignore [reportArgumentType]
        ),
    )
    if tool_calls := [
        part.function_call for part in response.parts if part.function_call.args
    ]:
        return Book.model_validate(
            {
                k: v if not isinstance(v, RepeatedComposite) else list(v)
                for k, v in tool_calls[0].args.items()
            }
        )
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from groq import Groq
from pydantic import BaseModel

client = Groq()


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    completion = client.chat.completions.create(
        model="llama-3.1-70b-versatile",
        messages=[{"role": "user", "content": f"Extract {text}"}],
        tools=[
            {
                "function": {
                    "name": "Book",
                    "description": "An extracted book.",
                    "parameters": {
                        "properties": {
                            "title": {"type": "string"},
                            "author": {"type": "string"},
                        },
                        "required": ["title", "author"],
                        "type": "object",
                    },
                },
                "type": "function",
            }
        ],
        tool_choice="required",
    )
    if tool_calls := completion.choices[0].message.tool_calls:
        return Book.model_validate_json(tool_calls[0].function.arguments)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from cohere import Client
from cohere.types import Tool, ToolParameterDefinitionsValue
from pydantic import BaseModel

client = Client()


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    response = client.chat(
        model="command-r-plus",
        message=f"Extract {text}",
        tools=[
            Tool(
                name="Book",
                description="An extracted book.",
                parameter_definitions={
                    "title": ToolParameterDefinitionsValue(
                        description=None, type="string", required=True
                    ),
                    "author": ToolParameterDefinitionsValue(
                        description=None, type="string", required=True
                    ),
                },
            )
        ],
    )
    if response.tool_calls:
        return Book.model_validate(response.tool_calls[0].parameters)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from litellm import completion
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    response = completion(
        model="gpt-4o-mini",
        messages=[{"role": "user", "content": f"Extract {text}"}],
        tools=[
            {
                "function": {
                    "name": "Book",
                    "description": "An extracted book.",
                    "parameters": {
                        "properties": {
                            "title": {"type": "string"},
                            "author": {"type": "string"},
                        },
                        "required": ["title", "author"],
                        "type": "object",
                    },
                },
                "type": "function",
            }
        ],
        tool_choice="required",
    )
    if tool_calls := response.choices[0].message.tool_calls:  # pyright: ignore [reportAttributeAccessIssue]
        return Book.model_validate_json(tool_calls[0].function.arguments)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from azure.ai.inference import ChatCompletionsClient
from azure.ai.inference.models import (
    ChatCompletionsToolDefinition,
    ChatRequestMessage,
    FunctionDefinition,
)
from azure.core.credentials import AzureKeyCredential
from pydantic import BaseModel

client = ChatCompletionsClient(
    endpoint="YOUR_ENDPOINT", credential=AzureKeyCredential("YOUR_KEY")
)


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    completion = client.complete(
        model="gpt-4o-mini",
        messages=[ChatRequestMessage({"role": "user", "content": f"Extract {text}"})],
        tools=[
            ChatCompletionsToolDefinition(
                function=FunctionDefinition(
                    name="Book",
                    description="An extracted book.",
                    parameters={
                        "properties": {
                            "title": {"type": "string"},
                            "author": {"type": "string"},
                        },
                        "required": ["title", "author"],
                        "type": "object",
                    },
                )
            )
        ],
        tool_choices="required",
    )
    if tool_calls := completion.choices[0].message.tool_calls:
        return Book.model_validate_json(tool_calls[0].function.arguments)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
from proto.marshal.collections import RepeatedComposite
from pydantic import BaseModel
from vertexai.generative_models import (
    FunctionDeclaration,
    GenerativeModel,
    Tool,
    ToolConfig,
)

model = GenerativeModel("gemini-1.5-flash")


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    response = model.generate_content(
        f"Extract {text}",
        tools=[
            Tool(
                function_declarations=[
                    FunctionDeclaration(
                        **{
                            "name": "Book",
                            "description": "An extracted book.",
                            "parameters": {
                                "properties": {
                                    "title": {"type": "string"},
                                    "author": {"type": "string"},
                                },
                                "required": ["title", "author"],
                                "type": "object",
                            },
                        }
                    )
                ]
            )
        ],
        tool_config=ToolConfig(
            function_calling_config=ToolConfig.FunctionCallingConfig(
                mode=ToolConfig.FunctionCallingConfig.Mode.ANY,
                allowed_function_names=["Book"],
            ),
        ),
    )
    if tool_calls := [
        part.function_call
        for candidate in response.candidates  # pyright: ignore [reportAttributeAccessIssue]
        for part in candidate.content.parts
        if part.function_call.args
    ]:
        return Book.model_validate(
            {
                k: v if not isinstance(v, RepeatedComposite) else list(v)
                for k, v in tool_calls[0].args.items()
            }
        )
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'
import boto3
from pydantic import BaseModel

bedrock_client = boto3.client(service_name="bedrock-runtime")


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


def extract_book(text: str) -> Book:
    messages = [{"role": "user", "content": [{"text": f"Extract {text}"}]}]
    tool_config = {
        "tools": [
            {
                "toolSpec": {
                    "name": "Book",
                    "description": "An extracted book.",
                    "inputSchema": {
                        "json": {
                            "type": "object",
                            "properties": {
                                "title": {"type": "string"},
                                "author": {"type": "string"},
                            },
                            "required": ["title", "author"],
                        }
                    },
                }
            }
        ],
        "toolChoice": {"type": "tool", "name": "Book"},
    }
    response = bedrock_client.converse(
        modelId="anthropic.claude-3-haiku-20240307-v1:0",
        messages=messages,
        toolConfig=tool_config,
    )
    output_message = response["output"]["message"]
    messages.append(output_message)
    for content_piece in output_message["content"]:
        if "toolUse" in content_piece and content_piece["toolUse"].get("input"):
            tool_input = content_piece["toolUse"]["input"]
            return Book.model_validate(tool_input)
    raise ValueError("No tool call found")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

Notice how Mirascope makes generating structured outputs significantly simpler than the official SDKs. It also greatly reduces boilerplate and standardizes the interaction across all supported LLM providers.

Tools By Default

By default, response_model will use Tools under the hood, forcing to the LLM to call that specific tool and constructing the response model from the tool's arguments.

We default to using tools because all supported providers support tools. You can also optionally set json_mode=True to use JSON Mode instead, which we cover in more detail below.

Accessing Original Call Response

Every response_model that uses a Pydantic BaseModel will automatically have the original BaseCallResponse instance accessible through the _response property:

Mirascope

from typing import cast

from mirascope.core import openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(openai.OpenAICallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(anthropic.AnthropicCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(mistral.MistralCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(gemini.GeminiCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(groq.GroqCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(cohere.CohereCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(litellm.LiteLLMCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(azure.AzureCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(vertex.VertexCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(bedrock.BedrockCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(openai.OpenAICallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(anthropic.AnthropicCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(mistral.MistralCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(gemini.GeminiCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(groq.GroqCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(cohere.CohereCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(litellm.LiteLLMCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(azure.AzureCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(vertex.VertexCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import Messages, bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(bedrock.BedrockCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import openai, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(openai.OpenAICallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import anthropic, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(anthropic.AnthropicCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import mistral, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(mistral.MistralCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import gemini, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(gemini.GeminiCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import groq, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(groq.GroqCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import cohere, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(cohere.CohereCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import litellm, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(litellm.LiteLLMCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import azure, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(azure.AzureCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import prompt_template, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(vertex.VertexCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import bedrock, prompt_template
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(bedrock.BedrockCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, openai
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(openai.OpenAICallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, anthropic
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(anthropic.AnthropicCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, mistral
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(mistral.MistralCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, gemini
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(gemini.GeminiCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, groq
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(groq.GroqCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, cohere
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(cohere.CohereCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, litellm
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(litellm.LiteLLMCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, azure
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(azure.AzureCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, vertex
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(vertex.VertexCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}
from typing import cast

from mirascope.core import BaseMessageParam, bedrock
from pydantic import BaseModel


class Book(BaseModel):
    """An extracted book."""

    title: str
    author: str


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


book = extract_book("The Name of the Wind by Patrick Rothfuss")
print(book)
# Output: title='The Name of the Wind' author='Patrick Rothfuss'

response = cast(bedrock.BedrockCallResponse, book._response)  # pyright: ignore[reportAttributeAccessIssue]
print(response.model_dump())
# > {'metadata': {}, 'response': {'id': ...}, ...}

Built-In Types

For cases where you want to extract just a single built-in type, Mirascope provides a shorthand:

from mirascope.core import openai


@openai.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import anthropic


@anthropic.call("claude-3-5-sonnet-20240620", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import mistral


@mistral.call("mistral-large-latest", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import gemini


@gemini.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import groq


@groq.call("llama-3.1-70b-versatile", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import cohere


@cohere.call("command-r-plus", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import litellm


@litellm.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import azure


@azure.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import vertex


@vertex.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import bedrock


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=list[str])
def extract_book(texts: list[str]) -> str:
    return f"Extract book titles from {texts}"


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, openai


@openai.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, anthropic


@anthropic.call("claude-3-5-sonnet-20240620", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, mistral


@mistral.call("mistral-large-latest", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, gemini


@gemini.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, groq


@groq.call("llama-3.1-70b-versatile", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, cohere


@cohere.call("command-r-plus", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, litellm


@litellm.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, azure


@azure.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, vertex


@vertex.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import Messages, bedrock


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=list[str])
def extract_book(texts: list[str]) -> Messages.Type:
    return Messages.User(f"Extract book titles from {texts}")


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import openai, prompt_template


@openai.call("gpt-4o-mini", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import anthropic, prompt_template


@anthropic.call("claude-3-5-sonnet-20240620", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import mistral, prompt_template


@mistral.call("mistral-large-latest", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import gemini, prompt_template


@gemini.call("gemini-1.5-flash", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import groq, prompt_template


@groq.call("llama-3.1-70b-versatile", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import cohere, prompt_template


@cohere.call("command-r-plus", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import litellm, prompt_template


@litellm.call("gpt-4o-mini", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import azure, prompt_template


@azure.call("gpt-4o-mini", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import prompt_template, vertex


@vertex.call("gemini-1.5-flash", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import bedrock, prompt_template


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=list[str])
@prompt_template("Extract book titles from {texts}")
def extract_book(texts: list[str]): ...


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, openai


@openai.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, anthropic


@anthropic.call("claude-3-5-sonnet-20240620", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, mistral


@mistral.call("mistral-large-latest", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, gemini


@gemini.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, groq


@groq.call("llama-3.1-70b-versatile", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, cohere


@cohere.call("command-r-plus", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, litellm


@litellm.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, azure


@azure.call("gpt-4o-mini", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, vertex


@vertex.call("gemini-1.5-flash", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]
from mirascope.core import BaseMessageParam, bedrock


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=list[str])
def extract_book(texts: list[str]) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract book titles from {texts}")]


book = extract_book(
    [
        "The Name of the Wind by Patrick Rothfuss",
        "Mistborn: The Final Empire by Brandon Sanderson",
    ]
)
print(book)
# Output: ["The Name of the Wind", "Mistborn: The Final Empire"]

Here, we are using list[str] as the response_model, which Mirascope handles without needing to define a full BaseModel. You could of course set response_model=list[Book] as well.

Note that we have no way of attaching BaseCallResponse to built-in types, so using a Pydantic BaseModel is recommended if you anticipate needing access to the original call response.

Supported Field Types

While Mirascope provides a consistent interface, type support varies among providers:

Type Anthropic Cohere Gemini Groq Mistral OpenAI
str ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
int ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
float ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
bool ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
bytes ✓✓ ✓✓ -✓ ✓✓ ✓✓ ✓✓
list ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
set ✓✓ ✓✓ -- ✓✓ ✓✓ ✓✓
tuple ✓✓ ✓✓ -✓ ✓✓ ✓✓ -✓
dict ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ -✓
Literal/Enum ✓✓ ✓✓ ✓✓ ✓✓ ✓✓ ✓✓
BaseModel ✓✓ -✓ ✓✓ ✓✓ ✓✓ ✓✓
Nested ($def) ✓✓ -- -- ✓✓ ✓✓ ✓✓

✓✓ : Fully Supported, -✓: Only JSON Mode Support, -- : Not supported

Validation and Error Handling

While response_model significantly improves output structure and validation, it's important to handle potential errors.

Let's take a look at an example where we want to validate that all fields are uppercase:

from typing import Annotated, cast

from mirascope.core import openai
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import anthropic
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import mistral
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import gemini
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import groq
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import cohere
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import litellm
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import azure
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import vertex
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import bedrock
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> str:
    return f"Extract {text}"


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, openai
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, anthropic
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, mistral
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, gemini
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, groq
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, cohere
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, litellm
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, azure
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, vertex
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import Messages, bedrock
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> Messages.Type:
    return Messages.User(f"Extract {text}")


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import openai, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@openai.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import anthropic, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import mistral, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@mistral.call("mistral-large-latest", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import gemini, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@gemini.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import groq, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@groq.call("llama-3.1-70b-versatile", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import cohere, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@cohere.call("command-r-plus", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import litellm, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@litellm.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import azure, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@azure.call("gpt-4o-mini", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import prompt_template, vertex
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@vertex.call("gemini-1.5-flash", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import bedrock, prompt_template
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
@prompt_template("Extract {text}")
def extract_book(text: str): ...


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, openai
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@openai.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, anthropic
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@anthropic.call("claude-3-5-sonnet-20240620", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, mistral
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@mistral.call("mistral-large-latest", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, gemini
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@gemini.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, groq
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@groq.call("llama-3.1-70b-versatile", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, cohere
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@cohere.call("command-r-plus", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, litellm
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@litellm.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, azure
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@azure.call("gpt-4o-mini", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, vertex
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@vertex.call("gemini-1.5-flash", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book
    # title
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='The Name of the Wind', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
    # author
    #   Assertion failed, Field must be uppercase [type=assertion_error, input_value='Patrick Rothfuss', input_type=str]
    #     For further information visit https://errors.pydantic.dev/2.7/v/assertion_error
from typing import Annotated, cast

from mirascope.core import BaseMessageParam, bedrock
from pydantic import AfterValidator, BaseModel, ValidationError


def validate_upper(v: str) -> str:
    assert v.isupper(), "Field must be uppercase"
    return v


class Book(BaseModel):
    """An extracted book."""

    title: Annotated[str, AfterValidator(validate_upper)]
    author: Annotated[str, AfterValidator(validate_upper)]


@bedrock.call("anthropic.claude-3-haiku-20240307-v1:0", response_model=Book)
def extract_book(text: str) -> list[BaseMessageParam]:
    return [BaseMessageParam(role="user", content=f"Extract {text}")]


try:
    book = extract_book("The Name of the Wind by Patrick Rothfuss")
    print(book)
    # Output: title='The Name of the Wind' author='Patrick Rothfuss'
except ValidationError as e:
    print(f"Error: {str(e)}")
    # Error: 2 validation errors for Book